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Abstract—The hypercircle method of Synge and Prager is applied to the structural analysis of rigid-
jointed planar frames. In Part [ theoretical foundations of the method are developed and bounding
formulae derived. These provide upper and lower bounds, as narrow as desired, on strain ecnergy.
local deformation and internal stress. A new procedure for reducing the number of statical and
kinematical degrees of freedomt is introduced.

INTRODUCTION

In 1947 Prager and Syngefl] introduced a new method of elastic stress analysis based on
the concept of function space. In this method a function (e.g. the stress ficld in an clastic
body) is regarded as a vector. Once a suitable inner product has been defined in the space
of these vectors they may be treated in accordance with the mathematical rules for inner
product spaces. Synge and Prager chose the integrated combination of a compatible striin
ficld and an ¢equilibrium stress ficld as the inner product and showed that the compatibility
and equilibrium equations of lincar clasticity define orthogonal hyperplunes with respect
to this product. Guided by the familiar geometry of Euclidean space they developed the
coneepts of the hypersphere™ and “hypercircle™ and used them to derive bounds on the
strain energy of the solutions to boundary-value problems in linear elasticity. In a postscript
they also derived a formula that could be used to obtain bounds on pointwise quantitics
such as stress and deformation. Synge’s 1957 monograph[2] provides a readable account
of the hypercircle method.

The application of the hypercircle method to structural analysis was treated by
Prager[3] in 1950, In Ref. [3] Prager dealt with trusses and, briefly, with beams in flexure.
The analysis of rigid-jointed frames without sidesway was cited by Prager as a problem to
which the method could be applied. 1t was not until 1977, however, that the application of
the hypercircle method to frame analysis was again considered. Then Villaggio[4] expressed
the methods of Synge and Prager in modern mathematical language. Villuggio took up the
problem of frume analysis, tllustrating with examples how upper and lower bounds could
be obtained for the deformation of simple frames. In his formulae for pointwise bounds
(theorems 29.1 and 29.2) he made use of the hypersphere but not of the hypercircle.

This paper, originating in Ref. [5], builds upon the work of Prager, Synge and Villaggio.
The concepts and notation of matrix structural analysis are integrated into this theoretical
framework leading to a concise formulation of the bounding formulac well suited for
complex, rigid-jointed frames. In order to obtain upper and lower bounds, both the dis-
placement and force methods of structural analysis must be brought into play, thus initially
doubling (approximately) the number of degrees of frcedom entering into the analysis. By
defining suitable subspaces. however, it is here shown that the dimensions may be greatly
reduced. The resulting computations are thus made less time consuming than those of the
conventional displacement or force method. The key to constructing subspaces that will
yicld good bounds lies in the use of ““superclements™ based upon the four-node rectangular
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Fig. . Member and global axes.

finite element. It is this development, presented in Part II, that transforms the hypercircle
method into a useful tool for structural analysis.

THE RIGID-JOINTED FRAME

In the idealized sense of the present treatment, a frame is a planar assemblage of straight
prismatic members, loaded and deforming in its own plane. The intersection of two or more
members is called a joint.

Let the members of the frame be numbered 7 = 1, M. A sct of orthogonal coordinate
axes is associated with cach member according to the following procedure: an origin of
coordinates is located at one end of the ith member and the & axis is taken along its
centerline ; the ¢, axis is then directed out of the plane of the frame, and the g; axis is taken
orthogonal to the first two such that &, 5., ¢, form a right-handed system (Fig. 1).

THE MEMBER FIELD EQUATIONS

It is assumed that the ith member is subjected to distributed axial and normal loads
FHE)Y and f7(3). and a distributed couple ¢7(&) (Fig. 2(a)). These functions arce taken to be
continuous on [0, L], where L, is the length of the ith member, The following notation is
introduced

=07 /1 dl' i=LM N

The axial foree #7(E,). shear force 177(E,), and bending moment #: (&) in the ith member
are written as the vector

n o= onr om]t P=1 M. )
The sign convention for these quantities is shown in Fig, 2(b). They are referred to
collectively as “member forces™. The member loads are related to the member forces by

the equilibrium equations

dn/ds, +8,+f =0 i=1LM {3)
where

i,=0 0 n"" 4)

The kinematical ficld variables are now developed. The kinematical model of the
member consists of two components : a deformabile fiber which in the undeformed state lies

UL
yd Ny cael

() (3]

Fig. 2. Force notation : external forces, internal forces. joint forces.
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along the ¢, axis and a set of undeformable transverse fibers, one attached to each point of
the longitudinal fiber. In the deformed configuration the displacement at any point along
the member is described not only by the displacements «; (£,), «”(&,) in the &, and », directions
but also by the angle & between the n, axis and the attached fiber. These displacements are
related to a set of deformations by defining the following: e:°(&,) is the stretching of the
deformabile fiber, ¢;"(&,) is the shear strain between this fiber and the attached fiber, and
x;(Z,) is the portion of the curvature of the deformable fiber due to change in €. The
member displacements and member deformations are therefore

u=[w « & i=l.M (5a)
e, =[e" ¢ KT i=1LM. (5b)

These quantities are related by the deformation—displacement equations

du/dé =e,+0, where 4, =[0 & 0]", i=1M. 6.7)

JOINT DATA AND JOINT-MEMBER END CONDITIONS

Let the joints of the frame be numbered z = 1, J. Furthermore, suppose that a sct of
global x. v, - axes has been established (Fig. 1). Then the joint displacements and forces
(Fig. 2(¢)) are given by

u,=[U; Ui & a=1,J (8a)
F,=[F;, F, Ci' a=1,J. (8b)
For simplicity, it is assumed that at cach joint either the displacement U, or the foree F, is

specified. Let the joints of the first class be numbered a” = 1, J7 and those of the second
class 2" = 1,J7. Then the joint data may be represented

0, o =1,J (9a)
F, a"=1,J" (Yb)

U,
,
F.

where U, and F,- denote the specified displacements and forces.
The rigidity of the joints requires the compatibility conditions

ul(Ll) = 'rlUZ(I‘I.) and ul(O) = T'UI(I.U) (IO)

where x(f, L) and 2(i, 0) denote the joints at which the ends &, = L, and 0, respectively, are
located. In eqns (10)

cosfi, sinfl, O
T, =|—sinfi, cosfl, 0 (1
0 0 |

where f3, is the angle between the global x axis and the ¢, axis (Fig. 1).
The corresponding equilibrium conditions for rigid joints arc

F: = z:lx.[,)T:Tn:(Ll) - Xr(:.ﬂ)’ri‘-nl(o) ( l?")

where I, ,, and I, o, denote the sums over those member ends &, = L, and 0, respectively,
which lie at the xth joint.
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MEMBER FORCE-DEFORMATION RELATIONS

The kinematical and statical equations of the frame have thus far been developed
independently. although certain parallels may be noted. In order to complete the theory, it
is necessary to introduce relations between the member force and deformation fields. These
are given by

n, = Ce, (13)
where
(E.A,)"" 0 0
C = 0 (G, A)~! 0o | (14)
0 0 (El)"

In this matrix E, is Young's modulus of elasticity and G, the shear modulus for the ith
member. A, is the cross-sectional area, A, the “shear area™, and /, the second moment of
area of the cross-section about the ¢, axis.

Equation (13) corresponds to the well-known stress—strain relation of linear elasticity.

ELASTIC STATES

An clastic state for a given frame Fis an array of member displacement, deformation,
and foree fields and joint displacements and foree vectors. If the abbreviations

u=u () uy(Sy) e=e (S ey(Sa)y mE ()0 (Sy)
U=lj|,...,lJJ, F=F|‘....Fj (15)
are used, then the symbolism
S=[uecn;UF] (16)
may be employed to represent an elastic state.t S will be called an admissible state i the
member ficlds u, ¢, and n are all piccewise continuous. If, furthermore, the member force
and deformation tields are related by eqn (13), the state S will be called an elastic state.
Hencetorth this term, or simply “state™ will mean an admissible elastic state.
The sum of two states and multiplication by scalars is defined by

S +bS = [un+bu, e + be, un+ b ; aU + bU, uF + bF] (17)

where
S =[u,e.n;U,F].

By virtue of this definition the set of all clastic states for a given frame is a vector space
and its clements are vectors. This space is now cquipped with the inner product

i

Mo
5.8)=%

(= 1J0

ML,
e n di =Y j @ +end" + ki) dé,. (18)
it do - -

It is simple to verify that

+ This notation is similar to Gurtin[6].
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(S.aS+bS'> = a(S.S> +5¢S.S". (19)

Furthermore, since n, = Ce,. n = C,g, and C, is symmetric and positive definite, it follows
that

(8.8> =<8.8>
(5.8>20: (5.S)=0 iffn,=e=0 i=1ln (20)

Definition (18) therefore satisfies the requirements for a valid inner product (p. 54 of
Shilov([7]). and the space of elastic states is now an inner product space. The norm of S is
defined by

ISI* = <S.S). o3y

From eqn (18) it may be seen that [|S]|® is twice the strain energy associated with S.
The Schwarz inequality, t.c.

IKS. 83| < ISt ISl (22)

may be proved (p. 57 of Shilov(7)).
The concept of orthogonality will play a central role in the theory. Two states S, S are
said to be orthogonal if

¢8.8> =0. (23)

KINEMATICALLY AND STATICALLY ADMISSIBLE STATES

Let a frame F composed of M members and J joints be given, along with a sct of
distributed member loads f, i = 1, M and joint data U, 2 =1,0F . o =1,J" This will
be called the general frame problem,

A state S is termed kinematically admissible (KA) for this problem if:

(1) the member deformation—displacement equations, eqn (6). are satisfied everywhere
{implying that the displacement fields are smooth) ;

(2) the joint compatibility conditions (10) are satisfied ;

(3) the joint displacements are consistent with the data ; i.e. egns (9a) are satistied.

A sccond class of states is defined in an analogous manner: S is statically admissible
(SA)if:

(1) the member cquilibrium equations, eqn (3), arc satisfied ;

(2) the joint equilibrium conditions, cqn (12), are satisfied ;

(3) the joint forces are consistent with the data; i.c. eqns (9b) are satisfied.
With these two definitions an important result involving the inner product of a KA and SA
state may be derived. Let S* be KA and S** be SA : then from definition (18)

ML,
(8*8*%) = ZJ ef-nr* di. (24)

i=1JO

If eqns (6) and (7) are used. integration by parts and eqns (3) and (4) yicld
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L, L,
'[ er-nt*dl = J u-f, &+ [u*-n**]5. (25)

0 0

But the last term on the right-hand side may be transformed using eqns (9). (10) and (12).
Hence inner product (24) becomes

L

M , J g
(S*.S**) =) w - f, di. + }: U, Fr*+ Z Ur-F,. (26)

i=14J0 2= =

This result is closely related to the principle of virtual work. It is now used to prove the
following theorem.
Let the state S be the actual solution of the general frame problem, then

(§*—-8,8**-8>=0 27

where S* and S** are KA and SA states, respectively. To prove this, it is observed that the
actual state S is, by definition, both KA and SA. Upon application of eqn (26) to the inner
products {S*.S**>, (§*.S). (S8.8**>, and {(S8.S). eqn (27) follows. This equation is
identical to eqn (9.9) in Ref. [1].

LINEAR SUBSPACES AND HYPERPLANES

Let £ denote the vector space of elastic states for a given frame. Then the notation
Sefl 28

will be used to signify that S is an elastic state. From the definition, £is infinite dimensional.
A sct of states £ is a lincar subspace of £if, forall S, S,e £

aS, +bS,e (29)

where ¢ and b are arbitrary scalars, If the clements of E are regarded as vectors drawn from
the origin (i.c. the 0 state), then £ may be viewed as a plane passing through the origin.

It is now convenient to define an associated homogencous problem for the general
frame problem described above. This is done by letting all the member loads f, vanish, and
requiring that the joint data be homogeneous ; i.c. no non-zero displacements or forces are
specificd. Let £7 and £” be the sets of states that are KA and SA, respectively, for the
homogencous problem. From the definitions it may be shown that £ and E” are both
lincar subspaces of £. Furthermore, for all S e £7, 8" € E”, e4n (26) shows that

(S,8"> =0 (30)

that is, all vectors in £7 are orthogonal to all vectors in £”. These two subspaces are said
to be orthogonal, £ may be termed the subspace of compatible states and E” the subspace
of residual states.

The general frame problem is now considered. Let £* and E£** denote the sets of KA
and SA states for this problem. These two sets are, in general, not lincar subspaces of £
since they do not contain the 0 state. However, if ST, Ste E* and ST*, St*e E**.1 then it
is casily scen that

St-S3%eE’, St*-St*ecL” 30
i.e. £* and E** arc parallel to £ and E”, respectively. By the parallelogram law of vector

addition, the difference vectors in expressions (31) may also be regarded as lying in £* and

t This mcans that the KA and SA states, regarded as points, lie in £* and £**.
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E**. In this sense the “planes™ E* and E£** may be said to be orthogonal. They will be
called hyperplanes. If one chooses S* = S%* = § in eqns (31), then eqn (27) is recovered.

THE HYPERSPHERE AND RELATED BOUNDS

Theorem (27) may be rewritten in the form
IS=Coll* = R} (32)
in which
Co = 4{S*+S**). R, = {||S*-S**|. 3%
This means that the actual state S lies somewhere on a “sphere” of radius R, about C,,.

called a hypersphere by Prager and Synge[l]. Equation (32) may be recast in the more
useful form

S=Cy+RJ. Jj=1 34)
Hence
I1S17 = ICall* +2Re{Cy. I> + R3. (35)
This expression readily yields bounds on |S)°
(ICall = R)* < UISIE < (ICo 1+ R? (36)
when the Schwarz inequality (22) is used. These bounds correspond exactly to the geo-
metrical idea of 8 as a point on a sphere.

In order to derive a bounding formula for a particular kinematical or statical quantity
belonging to the actual state S, the principle of virtual work is brought into play. If x
represents @ desired displacement, then one may construct a state G that is statically
admissible for u set of virtual forces that does work only through the unknown displacement
x. Equation (26) then gives

{8.G) = x. 37

Bounds on the inner product S, G) provide bounds on the desired displacement. An
analogous procedure using virtual displacements gives a desired statical quantity in terms
of an inner product. From eqn (34) there follows

<S~C> = <C0~C>+RU<J~G> (38)
and the following bounding formula is obtained :
(Coa. G = RIG] £ (S, G) £Co. GY + Ry|| G (39)
Formulae (36) and (38) may be found in Synge[2].
HYPERPLANES L* AND L**

Hyperplancs E* and £**, being infinite dimensional, are difficult to work in. It is
convenicnt to define hyperplanes L* < £* and L** < E£** that are finitc dimensional. This
leads to a formulation that is suitable for structural analysis.

First, the set E* of KA states is considered. If, in addition, one requires that $*e £*
be “almost™ in £** in the sense that all of the requirements for a statically admissible state
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are satisfied except the third requirement (i.e. the statical joint data). then a smaller set
L* < E* is obtained.

It is a straightforward matter to apply this definition in order to construct a state
belonging to L*. With the actual member loads placed on the structure, all the joints are
held fixed except where non-zero joint displacements are prescribed (at these points the
prescribed displacements are imposed). The member field equations may then be solved
subject to these kinematical boundary conditions. The joint loads. computed from the joint
equilibrium conditions, are the loads required to hold the joints fixed. If the state so obtained
is denoted S§, then Ste L* by construction. In particular, if the frame is loaded only at the
joints and the kinematical data are homogeneous. then St = 0.

Now the member loads are removed and the joint displacements which are not part of
the kinematical data are identified by a numbering systemp = 1.2.....n". The state obtained
by prescribing a unit value for the pth displacement while all the others are set to zero is
denoted ;. A general state belonging to L* may now be written

S*=Si+ Y xS (40)
p=1

where the v, are scalar parameters which may be identified with the joint displacements.
The second term on the right-hand side of eqn (40) defines a linear subspace L’ of dimension
n” (the number of kinematical degrees of freedom).

A general expression for the inner product of two states S*, S* belonging to £* may
be obtained. The computations leading to eqn (26) apply except that the statical data are
not satisficd. [FSY = S¥ = 0, this inner product takes the particularly simple form

J

4
(§*.8*) = Y Ur'¥t =3 UIF! (41)

=i -1

where F¥ and U are the joint forces and displacements associated with S*,

The hyperplane L** < E** is now defined. A state S** e E** also belongs to L** if it
satisfies the sccond and third requirements for kinematic admissibility and the first require-
ment is satisficd “almost everywhere™ in a manner that uniquely determines the displacement
fields u,($;) given the strain ficlds e($).

A state belonging to L** is found by imposing a set of n” statical constraints which
allow the member equilibrium equations to be solved for the given loading. Specifically, it
is required that one or more member lorees vanish at various points of the frame. The
required number of such construints is, by definition, the degree of statical indeterminacy
of the structure.t Since the requirements for kinematic admissibility are “almost” satisfied,
the member displucement ficlds and joint displucements may be determined. If the state so
determined is denoted S3*, then S3* e L**. Furthermore, a general state in L** may be
expressed in the form

S** =St*+ Y 5,8 (42)

gl

Here the o, are scalar parameters that may be identified with the redundant forces and S
is the state obtained by prescribing a unit value for the gth redundant, the remaining n” — |
constraints being kept in force. The second term on the right defines a subspace L” of
dimension #”.

Since L' « E’. L” < E” it follows that the subspaces L” and L” arc orthogonal. This is
equivalent to the condition

(5,.8>=0 p=Lansq=1n" (43)

Furthermore, hyperplanes L* < £*, L** < E** arec orthogonal in the sense given earlier.

+n” is the number of statical degrees of freedom.
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Henceforth S* and S** will be assumed to belong to L* and L**, respectively.

THE PRINCIPLE OF MINIMUM ENERGY DISTANCE
By construction. hyperplanes L* and L** both contain the actual state S. This state
may be found by minimizing the squared distance

d* = [|S*=S**|". (44)

If expressions (40) and (42) are substituted into eqn (44). and the minimization is carried
out by requiring that

Ad¥)/ex, =0, é(d?)/ée, =0 r=1.n;s=1,n" (45)

then the following two sets of linear algebraic equations are obtained for the determination
of x,and g,:

Y Kyx,—P,=0 r=1Ln

r=1
Y Byo,+A, =0 s=1Ln" (46)
qg=1
in which
K, =<(5.8,) =K, P, =(S}*-SLS,)> (47a)
B,=(8.8,> =8, A, = (83" -SLSH. (47b)

Cquations (46) are the equations of the displacement and force methods of structural
analysis. In particular iff 8§ = 0, then P, is simply the concentrated load corresponding to
the rth joint displacement. These equations may be written in compact form

Kx=P and Bo+A =0 (48)
If this notation is used, then eqn (44) may be rewritten as
d* = |S*-S**|° +Kx x~2P-x+Bas-a+2A 0. (49)
If the solutions of egns (48) are denoted by X and 4, it follows that

IS5 —Si*| —P- % +A-d = 0. (50)

HYPERPLANES L? AND L?*

Subspaces L and L” are of dimension n” and #”, where #” is the number of kinematical
degrees of freedom and »” the degree of statical indeterminacy of the structure. Since in
practice these numbers may be quite large. it is natural to seek ways of reducing them. This
may be accomplished most simply by discarding some of the vectors S, and Sj, lcaving the
sets S, i = |,v and 87, j = |, v". These define new subspaces L) < L"and L) < L”, and the
expressions

S*=S3+Y xS, S*=S*+) oS (51)

i=l =

now represent general states in two orthogonal hyperplanes L} < L* and L!* < L**.

SAS 24:6-F
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Minimization of the distance between these two states yields two sets of equations identical
in form to eqns (48) but smaller in dimension. These equations will be termed the vertex
equations. If their solutions are denoted by X and 4. then the two states

V*=SI+ Y £S. V**=S1*+Y 4,5 (52)
1 |

1= =

will be called the vertices of hyperplanes L} and L**. These are the points of closest
approach of the two hyperplanes to each other. It is now shown that the difference vector
V*—V** s orthogonal to both L¥ and L¥* (or, equivalently. L; and L}). Ifeqns (47), (51),
and (52) are used. a straightforward computation shows that

(V*—V** §* _V*> = (Ki—P)-(x—%) = 0 (53a)
(V*¥—V** S+ _y**) = (Bé+A) (6—d6) =0 (53b)

where the vertex equations, eqns (48). have been used. Now every vectorin L, may be given
by S* — V* for some S*e L}. Hence eqn (53a) implies the first of the desired orthogonalities;
the second follows by a similar argument.

These orthogonalitics may be used to derive additional bounding formulae on [|S]°.
First it is noted that since S—V**e L” and S e L’, there follows

0 =(S-V** S P= 1
=(S=-V*+V*_V** S
=(S=-V* 8D, (54)

Similarly, it may be shown that
§=V** 8> =0 j=1" (59)
Therefore, S — V** is orthogonal to both L; and L;. Hence
IS=S*I* = IS=V*|I* +[IS* - V*||* (56)
and since 0 < |S=V*||? < |V*—V**|°, there follows
[V*=S*II* S IS=S** S [V*=S*|[F + | V* = V**|°. (57)

In the case where LY contains the origin, S* may be set to 0. Furthermore, in this case eqn
(53a) shows that {V* V¥ —V**> = (. With these simplifications cxpression (57) becomes

IV*IE < ISIF < Ivee? (58)
a result given by Prager and Synge[l]. Using an cxactly analogous procedure it may be
shown that in the casc where L¥* contains the origin inequalitics (58) are reversed. The
first case is equivalent to the condition S} = 0, and is predominant in practical applications.

The following results which pertain to this casc are recorded for future reference:

IV*)* = Ki-% = P+

IV**I° = {ISt*1*+2A-6+Bd-é = |Si*|*+A 6. (59)

These are obtained from eqns (47). (48), and (52).
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THE HYPERCIRCLE

The hypercircle provides a means of deriving a more refined type of bounding formula.
The treatment given here is based on that of Synge[2]. except that an orthonormal set of
vectors is not assumed to be available.

It is first recalled that S, i = 1.v" and S, j = L, v" are two linearly independent sets of
vectors lying in L” and L”. respectively. Now let S* and S** be any states belonging to L?*
and L**. Then since S—S*e L’ and S—-S**e L, it follows that

$-=8**§>=0. i=1.v; S$-8*8>=0. j=1," (60)

These equations may be rewritten as

S$.8S>=da. i=1v": 8.8 =d], j=1 (61)

where
a; = (S**.S/) = (SI*.§)) (62a)
d) = (S*.S7> = (SLSD. (62b)

Equations (61) confine the solution S to a hyperplane of dimension " +n"—v' —v", or, in
the terminology of Synge. a hyperplane of class v/ 4v",

Since the states 8* and $** also serve to locate S on a hypersphere, it may be concluded
that 8 lics on the intersection of the hyperpliane and the hypersphere. This intersection is
given the natural name hypercirele by Synge and Prager. The equations of the hypercircle
will now be developed.

The center of the hypercirele is sought in the form

C=Ci+ Y 0SS+ Y bS) (63)
R} 1= 1
with the requirement that
CSH>=qa., i=1v; (CSO=d, j=1 (64)
so that C lies in the hyperplane defined by eqns (61). In egn (63), C, is the center of the

hypersphere given by eqn (33),. 11 the inner product of eqn (63) is taken first with S, then
with S;,, the following sets of equations are obtained :

i = (Co SO+ Y Kb, k=1 (65a)

[

u::v = <CU‘S;:I>+ Z Bm[b,/' n = l' "” (65b)
1=1

where egns (64) and (47) have been used. IF eyns (33),. (47). and (62) are used the above
cquations may be put in the form

Kb = !¢, Bb" = l¢" (66)
where
¢ =P-Kx. ¢ = —-A-Bo. 67

Equations (66) admit unique solutions for b’ and b”, so that point C given by eqn (63) is
well defined. A further computation shows that eqn (63) yields the relation
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IS—C|I* = [S—Coll*—ie"-b —le"-b". (68)

This may be rewritten in the form

IS-ClI* = R* (69)
where
R =Ri—le"b —lte" b” (70)
R, being the radius of the hypersphere. Equation (69) may be rewritten as
S=C+RJ. ]| =1 an
and from eqns (61). (64). and (71) it follows that
WOSH =0, i=1v; A8 =0, j=1.v" (72)

Equations (71) and (72) are the equations of a hypercircle with center C and radius R.
Interpreted geometrically, eqns (72) mean that the unit vector J (drawn from C) lies in the
hyperplanc.

If the vertex cquations, eqns (48), are satisfied. then from eqns (66) and (67) there
follows

e=b=0 ¢ =b" =0 (73)

Hence from egns (63) and (70)
C=C,= V*+V*), RI=RI= LV —v**)2. (74)
These equations mean that, if S* = V* and S** = V**_then the center of the hypercircle

and hypersphere coincide and their radii are equal : the hypercircle is a great circle of the
hypersphere.

BOUNDS USING THE HYPERCIRCLE

The hypercircle will now be used to find improved bounds on the inner product (S.G).
First G is written as

G=G+Y ¢S+ ¢S; (75)
i | i=~ 1
with the requirement that
(G.8)>=0, i=1v: (G.S>=0, j=1." (76)

This means that G is the component of G lying in (parallel to) the hyperplane. If the inner
product of eqn (75) is taken first with S;, then with S, the two systems

Kg' =z, Bg' =72" (77)

are obtained for the determination of the scalar parameters g/, g7. The vectors z’ and z” are
given by
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Fig. 3. [llustrative problem configuration (bending moment is positive if dotted side of member is
in tension).

2, = (G.8;)>. k=1v; 2, ={G.8.)., m=1,v" (78)
A computation then shows that
IGI* = |GIF ~2 g’ ~2""¢". (79)
It is now possible to obtain a new bounding formula ; from eqns (71)
{8.G) = (C,GY+ RLG). (80)
But from eqgns (72) and (75) it follows that
.Gy =6 <G (81
where the Schwarz inequality has been used. Hence the formula
(C.Gy=RIG] < <¢S,.G) <(C.G>+RIG| (82)
is obtained, in which |G| is given by eqn (79). This new result represents one of the most
useful products of the hypercircle method. Its application in structural analysis will be the
focus of the remainder of this article. Henceforth, it will be assumed that the vertex
cquations, eqns (48), are sutisfied. In this case, the inner product (C, G) may be computed

as follows :

(C.G) = 1KV*, GH+(V**,G))
= L(SEGY+7 X+ (SI". Gy +7"+d (83)

where eqns (52), (74). and (78) have been used. The radius of the hypercircle is given by
eqns (49), (50), and (74),

4R*

d* = |V*=V**|* = ||S;~S3*|°—P-X+A-d. (84)
For the case where S} = 0, the important simplification

4R = |[V** P —|V*|* = [S§*II°+A 6 —P % (85)
occurs. The "“hat™ on X and ¢ may be suppressed when it is implied by the context.

AN ILLUSTRATIVE EXAMPLE

To illustrate the application of these bounding formulae to a specific problem. the
structure and loading shown in Fig. 3(a) is considered. Bounds are wanted for the lateral
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Fig. 4. Joint displacements and forces assoctated with states £, and 6,

displacement (drift) at the roof and fitth story levels. For didactic reasons it is desirable to
carry out the computations by hand ; therefore deformations due to axial loud and shear
forces are ignored.

First the state S¥* is constructed by inserting hinges at the midpoints of all members.
The bending moment diagram thus obtained is shown in Fig. 3(b). It is then assumed
that the actual state may be approximated by a statically admissible state of the form
S** = 8% +a,S7+0,8% This is simply eqn (51), with v" = 2. In the above cquation S7
and 8% are the residualt states shown in Fig. 3{c). To obtain the “best” values of o, and
a5, the vertex cquations, eyn (48),, arc applicd. Explicitly

7 (ST.87) + (8181 = (8§ -8 81)
o, {8187) +a.:(5%.8%) = (87 -8§*. 8.

The inner products are computed  from  definition (I8). Clearly, S¥=0 and
(S¥* Sty = B, , = 0. The remaining inner products are

By =(1HL/ED, By, = (8/3)(L/L])
A, = (PLY)/(OEDN, A, = —(PL°)/(12E]).

Then
6, = —~0N /B, = —PLI4 a,= —AB,, = PL/32.
A computation also shows that
ISE*I* = (19/16) (P*LYET)
so that
IV**2 = [SE*1*+ A0 = LITIO(P LY ED.

Next a kinematically admissible state S* which approximates S must be found. This
is done by first introducing the lwo compatible states U, und 0,. where U, is the state obtained
.by imposing a unit horizontal displacement on both joints of the ith story and 8, is the state
obtained by imposing a unit rotation on the same two joints. The joint displacements and
forces associated with these states are shown in Fig. 4.

For this structure and loading, it is known that the displacements tend to increase
linearly and the rotations tend to a constant value. This suggests the following linear
combinations of U, and 8,:

t Henceforth “residual state™ implios 8¢ L7 “compatible state” implics S’ e ..



A hypercircie method of frame analysis—I. Theory 633

[-1%] 12E1
12E1 .T't; Y 12E1
v, - o
12E1 IBE!
e L
S, S,
1 2
IBE!
L
12E1 §El ZI6EL
[ 2 L

Fig. 5. Joint displacements and forces associated with states S and §% (vertical forces not shown
in 573

S'; = U; +3llg+3U;+ e +‘0U|n. S,: == 0;+02+0;+ e +o;(’.

The joint displacement and forces associated with these states are shown in Fig. 5. A
kinematically admissible stute of the form

S* = .\'|S'| +.\‘ZS':

is now sought. The vertex equations, cyn (48), are applicd, with the refevant inner products
computed from eqn (41)

Koy =240(EHLY, Koy= Ky, = 28(EHLY)., K. = 348(EI/L)

P, = 0P, P,=0
240 228L 7 {y, ‘ 1
- ' FERNE A
228L 3MLY | |x.f 1oPLYEL 0

which has the solution
Xy = (430/3822) (PLYIEl), xy = —(285/3822) (PLY/ED).
Hence
IV*I|* = P-x = LI25IPLYEI
and the bounding formula (58) gives
LI2SIPALYEIS IS < 1.1730P°LY/EL
Since the single load, P. is applied at the top of the frame, the above bound on the
strain energy gives immediate bounds on the drift. Given the relative simplicity of the
computations these bounds are remarkably close. They could be improved as much as
desired, naturally at the expense of additional computation.

Expression (82) may be used to find bounds on the deflection at the fifth story level.
The application of a untt load to the hinged structure at this point, B, as shown in Fig.
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Fig. 6. Loading and bending moment diagram for state G.

6(a). results in the bending moment diagram shown in Fig. 6(b). If the associated state is
denoted G. the desired displacement is given by

uy = (G.S).
The following inner products arc then computed
(G = 9L 16ET, (GSE*> = T1PLY12E]
S =KG.S) =5 =(G.8) =LY6EL Dy =:1=0.
The solution of cqns (77) then gives
g = SO(SLYTOMED, gy = =STSLYTGAIED, o) = L/14. g5 =0,
The computations may then be completed us follows : from egn (83)
(G, C) = Y x+{(G.S*) +2"0)
= (PLY2ED [(2150/3822) +(7/12) = (1/84)] = 0.5670(PL*/ED)
and from eqn (85)
R = L(IV**[P = VII*) = 0.0L198(PLY/ET).
Finally, from egn (79)
NG = |G =2 g =2 g" = (LY ED [(9/16) = (2150;7644) — (1/84)] = 0.2693(L>/E1).

If these values are substituted into the bounding formula (82), the following bounds arc
obtained :

uy 2 (G.CY—R|IG| = 0.5102(PL"EI)
uy < <G.C)+ R|GIl = 0.6238(PL*/ET).

This compiletes the example.

GENERAL LINEAR SUBSPACES

Linear subspaces L, and L7, created simply by discarding some of the vectors S, and
S;. are too restrictive to be usclul for practical cases. As scen in the preceding example, it
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may be necessary to employ more general types of subspaces. Such a treatment is now
presented.

Let x, and o, be the “old™ kinematical and statical parameters. respectively, and let x;
(i=1.v<n)and g, (j= 1,v" < n") be the “new™ sets of parameters. Then the linear
transformations

x,=3yTux, p=Ln: o,=% Q,0,, g=1Ln" (86)
i= | j=1
define linear subspaces L = L"and L5 < L”. The vertices of the associated hyperplanes L
and L3* are located by solving the vertex equations

Kx=P. Bo+A=0. 87)

The transformations giving K. P and B. A arc obtained by appealing to a familiar invariance
argument. The squared distance, eqn (49). should remain invariant under the trans-
formations. i.e.

IS§—S#*I*+Kx-x-2P'x+Bg-0+2A-0
= ISt -S2**+Kx"x=2Px+Bo-a+2A-a. (88)

Transformations (86) arc written in compact form and substituted in the right-hand
side of eqn (88). Since the resulting equation must hold for all x, g, it follows that

K=01"KI, P=1"P; B=Q'BQ. A=Q'A (89)

The form of these expressions is well known. The other vectors entering into the hypercircle
miethod are obtained similarly ; eqns (77) become

Ky =7, Bg" =27 (90)

in which
=2, 27=Q"%". 91)

Once eyns (87) and (90) have been solved, the quantitics appearing in the bounding formula
(82) may be computed with the unbarred vectors replaced by their barred counterparts.
Equations (59), (79), and (83) become

(VP = Peox. [V**]* = |Si*I|I°+A-a (92a)

161 =Gl —2g' —2" g (92b)

(C.GY = {((SH.GY+7 - x+(S§*. G +2"*a). (92¢)
CONCLUSION

The theoretical basis for the application of function space methods to the structural
analysis of rigid-jointed planar frames has been developed. The formulae permit com-
putation of bounds on dcformation and stress. These bounds may be made as narrow as
desired, though, understandably, additional accuracy entails additional computational
effort. The theory is illustrated by a didactic example. Practical application of the method
to large structures having many members is, however, deferred to Part Il
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APPENDIX. NOTATION

B flexibility matrix; see eqn (47b)

¢ clasticity matrix ; see egn (14)

C, veetor tocating center of hypersphere

C vector locating center of hypercirele

o “distance™ between two elastic states ; see cyn (44)

E vector space of elastic states for a given frame

¢, deformation vector for member i, [ef ¢ &7

F, external forees, joint x (see Fig. 2. [F, FL CiJF

f external loads on member i (see Fig. 26)). /7 /7 &7
G statically admissible state for virtual toading

I vectors detined by cqns (77)

I unit vector; see egns (34)

K stiffess matrix; see eqn (470)

/ finite-dimensional subspace of £

n, axial foree, shear, bending moment (see Fig. 2(b)), [0 n®* "
r concentrated joint force vector ; see eqn (48)

R, rachius of hypersphere

R radius of hypercirele

S clastic state vector; see eyn (16), o, e,n U F]

T member rotation vector ; see egn (1)

U, displacement vector for joint 2 (see Fig. 2(o), (U U, )"
u, displacement vector for member i, {1 u? F)°

v vertex of L

3 vector delined by eqns (78)

A vectors defined by eqn (47b)

oo, Cuartesian axes associited with member  (see Fig. 1),



